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Abstract 

ROSE represents a programmable preprocessor for the highly aggressive optimization of Ct+ object- 
oriented frame-xorks. A fundamental feature of ROSE is that it preserves the semantics, the implicit 
meaning, of the object-oriented framework’s abstractions throughout the optimization process. permitting 
the frameyork’s abstractions to be recognized and optimizations to capitalize upon the added value of the 
framework’s true meaning. In contrast, a CS+ compiler only sees the semantics of the C++ language 
and thus is severely limited in what optimizations it can introduce. The use of the semantics of the 
framework’s abstractions avoids program analysis that would be incapable of recapturing the &men-ark’s 
full semantics from those of the C-+-t language implementation of the application or framework. Just 
as no level of program analysis n-ithin the C+t compiler n-ould not be expected to recognize the use of 
adaptive mesh refinement and introduce optimizations based upon such information. 

Since ROSE is programmable, additional specialized program analysis is possible n-hich then com- 
pliments the semantics of the framework’s abstractions. Enablin g an optimization mechanism to use 
the high level semantics of the framexvork’s abstractions together with a programmable level of program 
analysis (e.g. dependence analysis), at the level of the Lamen-ork’s abstractions, alloxs for the design 
of high performance object-oriented frameworks n-irh uniquely tailored sophisticated optimizations far 
beyond the limits of contemporary serial F0RTR.U 7: C or C++ language compiler technology. In 
short, faster, more highly aggessiye optimizations are possible. The resulting optimizations are literally 
driven by the frame-xork’s definition of its abstractions. Since the abstractions nithin a kamen-ork are 
of third party design the optimizations are similarly of third party design, specifically independent of the 
compiler and the applications that use the framework. 

The interface to ROSE is particularly simple and takes advantage of standard compiler technology. 
ROSE acts like a preprocessor, since it must parse standard C++‘, and its use is optional, it can not 
be used to introduce any new language features. ROSE reads standard C++ source code and outputs 
standard Ct-l- code. Its use is always optional, by design: so as not to interfere with and to remain 
consistent xvith the object-oriented framework. It is a mechanism to introduce optimizations only; adding 
language features using ROSE is by design no more possible than within the framework 
itself. Importantly, since ROSE generates C i-i- code it does not preclude the use of other tools or 
mechanisms that n-ould work with an application source code (including template mechanisms). 

1 Introduction 

The development of object-oriented frameworks has permitted the centralization of expertise and its reuse 
by numerous people, research groups, institutions and industries. The expertise represented within object- 
oriented frameworks has ranged from support for comples geometries and grid generation to the introduction 
of advanced numerical algorithms (such as adaptive mesh refinement), to the encapsulation of parallelism 
on advanced computer architectures. The reuse of this work within Overture framework has estended from 
Computational Biology at UC Davis, to the modeling and design of sails for America’s Cup Yacht Rac- 
ing at Doyle (sp?), to the design of diesel engine simulations at Lawrence Livermore I\‘ational Laboratory 
with Caterpillar Inc. Other frameworks have likely also received broad use spanning multiple research and 
industrial disciplines and leveraging their support. The estream brea.dth of the different areas of esper- 
tise represented by individual object-oriented frameworks has not been entirely offset by the performance 

‘ISO/IEC 148821998 Cti standard as implemented by EDG 



issues associated with high performance computing, particularly at national laboratories where high perfor- 
mance within computational simulations is in greater focus (and the parallel computer architectures more 
specialized, complex and obscure). 

In looking at what has been learned from the use of object-oriented frameworks, it has been the extream 
elegance of the powerful abstractions (grids encapsulating complex moving geometry, solvers encapsulating 
adaptive mesh refinement, and array operations encapsulating parallelism, etc.) when layered with the 
syntactic sugar represented by overloaded operators that has enticed framework and application developers 
the most. 

In contrast to the abstractions in an object-oriented framework, the C++ compiler ignores the rich 
semantics embedded in these powerful abstractions and effectively filters their potential influence upon the 
optimization of applications using such object-oriented frameworks. For example, within an array class 
the semantics of the array abstractions may include complete evaluation of the rhs before assignment to 
the lhs, array semantics; but the compiler can not see this and so cannot use this semantics to introduce 
optimizations. The array class might enforce array semantics, but the compiler would never be sure that 
loop optimizations could use such knowledge, the result is suboptimal performance. Within advanced cache 
optimizations the lack of such seemingly detailed information can invalidate there use, dramatically effecting 
the performance on cache based architectures. 

ROSE represents a mechanism to capitalize on the semantics represented by abstractions implemented 
by an object-oriented framework. ROSE uses this semantic information to define an automated mechanism 
to introduction optimizations which FORTRAN and C compilers have insufficient semantic information to 
introduce. Access to this additional semantic information, beyond that of the C or C++ language semantics 
is the key reason why advanced transformations for cached based architectures can be automated. Such 
cache transformations can out perform typical FORTRAN 77 and C compilers by factors of three to four 
/cite[CacheOpt imization]. Serial optimizations are only half of the optimization potential, parallel object- 
oriented frameworks define specific parallel semantics for their abstractions. Parallel optimizations are also 
possible (for example, scheduling of communication), but inaccessible since the base language’s semantics 
(for example, C++) does not include parallel semantics. Serial compilers can implement optimizations that 
take advantage of parallel semantics that they know nothing about and can not see. ROSE provides a 
mechanism to capture the original high level semantics introduced by the object-oriented framework and use 
these to drive more sophisticated optimizations that those possible within the greatly restricted semantics 
of the base language (C++, for example). 

1.1 Object-Oriented Frameworks 

The development of scientific simulations generally involves: 1) the definition of the problem 2) the specifica- 
tion of the relevant physics 3) the selection of numerical approaches 4) the design of the application code 5) 
the specification of the geometry upon which to run the simulation. A measurable percentage of application 
are initially conceived of within restricted geometries (Cartesian coordinates or simple transformations of 
Cartesian coordinates), but many or most practical applications involve some geometric complexity. De- 
spite the emphasis on high performance computing the development of the grid generation consumes many 
months compared the the execution time of the computations which take only days. The wide spread use 
of simulations on complex geometries is limited by the availability and complexity for users to master such 
techniques and the ability of current computational hardware to process such simulations. 

Overture is an object-oriented simulation framework that addresses many aspects of the development of 
complex simulations associated with industrially relevant applications. A current focus within the Overture 
team is the simulation of diesel engines. Such engine simulations involve significant complexities, with com- 
plex internal shapes and many moving parts. The time scales and relative size of features within the geometry 
and the fluid flow require locally tailored grid resolution which demand adaptive mesh refinement numerical 
methods. The complexity of tying these complexities together can not overshadow the requirements of high 
performance on advanced computer architectures. 



Figure 1: Example Overture application: flow simu!arion of moving valve n-ithin an engine in 2D and 3D. Such 
simularions tie togerher numerous software complesities. The expression of such complex flow applications using 
abstracrions represented nithin the Overture framework provides a rich opportunity for sophisticated optimizatioos: 
but for the fact that the semantics of the framen-ark’s abstractions are ignored by the underlying C+-S compiler. 
ROSE provides a mechanism to use the framexvork’s semantics to automate sophisticated optimizatiors. 

1.2 What Problem ROSE Solves 

The purpose of ROSE is to provide a mechanism to achieve high performance for scientific computations. 
ROSE addresses the specific and ever changing requirements of current computer architectures by abstracting 
the details associated n-ith performance (specific transformations) and separating them from the development 
of the more general application. The right transformation on the wrong architecture would of course only 
slow performance generally, so separating these as much as is reasonable provides a mechanisms to develop 
scientific software that are portable. Using object oriented frameworks the development of the scientific 
applications (such as those using Overture) is greatly simplified: ROSE addresses performance issues within 
the use of such object-oriented frameworks. ROSE is not in any Kay specific to use with Overture but is 
being use n-ith Overture to address provide optimizations cache based optimizations, these optimizations are 
independent of Overture and can be applied to other frameworks and even C language applications directly 
/footnoteThe use of ROSE with C applications as a mechanism to automate the introduction of cache 
based transformations has not been the target of current work and would require either greater program 
analysis rhat is likely possible today or some direct intervention by the application n-ritter to specify where 
ROSE could apply the optimizations (transformations). This n-ork would expand the applicability of ROSE 
orthogonally to the optimization of object-oriented frameworks.. 

Specific problems that ROSE addresses can include any compile time analysis or transformation, a short 
list includes: 

. Simple elegant interface, consistent across all machines 



l Loop fusion of binary operators 

l Loop fusion across statement (requires simple dependence analysis) 

l Cache based transformations 

l Temporal locality optimizations 

0 compile-time performance metrics 

1.3 Scope 

ROSE applies broadly to all C++ object oriented frameworks, nothing in the design makes is specific to 
A++/P++ or Overture directly. Since C is a subset of C++ it could be used more generally to introduce 
specialized optimizations into C applications as well. Avoiding the use of the object-oriented framework 
and the abstractions that it presents however complicates the specification of where optimizations can be 
preformed. So while ROSE could work with C as a mechanism to introduce transformations the C program 
application would have to specify in some way Fvhere optimizations would be done. The effect of avoiding 
the object-oriented frameworks is to lose the abstractions that can drive the automated optimizations. 
Applications of ROSE to other languages is clearly possible, but not within the scope of our current work. 

ROSE provides optimizations through the introduction of transformations. The users that ROSE targets 
are those developing object-oriented- frameworks, and not the users of those frameworks. =ipplication devel- 
opers n-ould have no use for ROSE except to implement optimizations not implemented by the framework 
n-ritter. Since ROSE is entirely optional, it does not change the semantics of the frarnexork in any Kay, it 
only addresses performance optimizations. 

1.4 Short Term Goals 

The immediate goal of current xvork is to provide performance optimizations for Overture (and more specif- 
ically the A++/P++ array class library used n-ithin Overture). Specific transformations currently being 
worked on include simple binary operator elimination, simple spatial transformations for cache, loop fusion 
and more sophisticated temporal transformations for cache. 

2 How ROSE works 

ROSE acts like a preprocessor; it does not introduce any language features, it accepts C-F+ source code 
and outputs C++ code. Its use is by design optional so as not to interfere with with the object-oriented 
framework. It is a mechanism to introduce optimizations only, adding language features using ROSE is 
by design not possible. Internally within ROSE each transformation represents a single pass. Currently 
we assume that all transformations are independent (mechanisms for staging of transformations u-ould be 
more complex and may be represented in later work). MYthin the presentation of how ROSE works we will 
consider only a single transformation, as an example we will consider the transformation of a simple 1D 
array statement (but most of our presentation will be more abstract). 

ROSE internally uses the Sage II source code restructurin g tool from University of Indiana and IS1 
(Gannon and Keselman). Sage uses the Edison Design Group (EDG) C++ front end, and provides a public 
interface to the internal (private) EDG representation. Essentially, Sage II implements the C++ grammar 
as an object-oriented interface (each nonterminal is an object), the user’s C++ application is then internally 
represented as a program tree (graph) consisting connected elements of the C++ grammar. 

The specification of a transformation (optimization) within an arbitrary object-oriented framework con- 
sists of tn-0 parts: 

1. the specification of when it can be introduced, and 

2. the specification of the transformation itself. 

Alany other transformations proceed nearly identically except for the specification of the transformation 
itself. 



2.1 Specification of where to introduce optimizations 

The specification of where to introduce a transformation typically requires the use of program analysis. 
Simply put, program analysis is the discovery of how the application code (using the semantics of the 
programming language) is using variables and language constructs (loops, conditionals, etc.). Much work has 
been done on program analysis and within compilers it is quite sophisticated, but surprisingly little is possible 
to fathom from an application using only the semantics of a low level language (C, C-t+, FORTRAN). In 
general, the most complete program analysis occurs where the languages semantics is most restrictive. Clearly 
the languages with the most restrictive semantics tend to complicate the expression of sophisticated scientific 
applications and this is the basis of FORTRAN often out performing other more modern languages. 

The basis for knowing when to introduce a transformation is to perform some sort of pattern matching. 
Explicit pattern matching is not particularly practical nor sufficiently general, a more acceptable approach 
is to define a grammar. All languages are defined using a grammar, a standard way to present a grammar 
is to use Bachkus-Nour Form (BNF) notation”. An object-oriented framework also has a grammar and its 
grammar can be simple to complex depending upon the framework. But since the development of an object- 
oriented framework does not proceed along the same conventional lines as the development of a language, 
few if any object-oriented frameworks have an explicit grammar (we present a representation of the grammar 
for an array class separately). 

Clearly C++ has a grammar, internally compilers use this grammar as part of the implementation of the 
compiler and the internal representation of the application source at internal stages within the compilation 
process (more than one grammar is often used). The access to the internal program representation is an 
important part of ROSE. ROSE uses the Sage II source code restructuring program to provide access to the 
program tree. Sage uses the EDG front end and separate agreements with EDG have permitted us access to 
all EDG source. Sage II provides a public interface to the private EDG internal representation, providing a 
object-oriented implementation of the C++ grammar used to define any C++ application. Sage permits the 
editing of that internal representation and the unparsing of its representation back into .C++ source. The 
object-oriented implementation of the C++ grammar (each terminal and nonterminal is a separate object, 
etc.) provides the base level grammar within ROSE. 

2.1.1 How The Grammar Is Defined 

Since the C++ grammar is quite large (consisting of several hundred of elements) the C++ representation of 
the program tree can be overwhelmingly complex. The direct identification of abstractions (as implemented 
in C++) of framework abstractions is far too complex. To simplify the job a grammar is defined which 
represents the object-oriented framework directly. Using ROSE with an arbitrary object-oriented framework 
would require the specification of the grammar representing the targeted framework. This is done using a 
conventional Extended BNF notation (a classic way to define grammars). 

In the example of a transformation of array assignment statements two grammars will be defined. The 
first is a grammar is defined to represent the array class. Space within this paper does not permit the 
presentation of this grammar (it is available one the Overture web site separately). Figure x shows a small 
part of the grammar representing the A++/P++ array class library (the Array Grammar), its complete 
listing is available separately through the Overture web pages. This figure shows the use of the grammar 
definition mechanism within ROSE which allows a grammar to be defined using Extended Bachus-Kour- 
Form (EBNF) notation. This mechanism for specifying a grammar is particularly simple because it permits 
conventional BNF notation to be used, the execution of this C++ code represent the grammar is sufficient 
to build the code that is then compiled with ROSE to define the use of this grammar. 

Additional grammars that are specific to each individual transformations can now be defined which use 
the array grammar. Figure x shows the array assignment grammar. 

More complex transformations (stencils, for example) require still higher level grammars that build on 
top of this. Such example would be too complex for presentation within this paper. 

2For more background see the Dragon Book 



Granmar::NonTerminal ArrayExpression = 
ArrayNumericExpression 
I ArrayRelationalExpression 
I ArrayLogicalExpression 
I C-Expression 
I ArrayOperand; 

Figure 2: Example of product rule (in EBNF notation) for nonterminal of the array grammar using the mechanisms 
for defining grammars within ROSE. 

Grammer: :NonTerminal arrayoperator = arrayBinary0perator; 
Grammer: :NonTerminal assignmentOperator = arraytype ‘I: :” “operator=” 
Grammer::NonTerminal transformableExpression; 
transformable-expression = trensf ormableExpression k operator & transf ormableExpression 1 

arrayoperand arrayllperator arrayoperand 1 arrayoperand; 
Grananer::NonTerminal lhs-operand = arrayoperand; 
Granrmer::NonTerminal rhs,operand = transformable-expression; 
Grammer::NonTerminal transform-statement = lhs-operand & assignmentOperator B rhs-operand; 

Figure 3: Array .ksignment Grammar Production Rules: Example of product rules (in EBSF notation) for the 
array assignment grummur using the mechanisms for defining grammars within ROSE. 

2.1.2 How the grammar is used 

1i-ithin ROSE the specification of the grammar is sufficient to generate code that ROSE then uses internally 
to build the parser and the object oriented implementation of the grammar used to represent a program tree 
using the associated grammar. Tens of thousands of lines of code can be automatically generated; greatly 
simplifying the process of handling large grammars associated n-ith sophisticated object-oriented frame-xorks. 
part of ROSE is the user interface which permits customization of the behavior of these implementations of 
the grammar, permitting user defined code to be inserted into the implementations of the grammars. Current 
attempts within this research are to automate as much of the generation of the grammars as possible. 

The introduction of grammars provides a mechanism to separate different parts of the application code. 
The array grammar is used to define array operations (statements, expressions, types; etc.). Sage II provides a 
program tree represented by a graph of elements in the C++ grammar. This representation is not sufficiently 
refined for our purposes and does not effectively differentiate parts of the program tree representing non-array 
class code from parts of the program tree representing array class code (though clearly it is all C;+ code). 
To further refine and synthesize the application code’s use of the array class the program tree is parsed using 
the array class grammar, effectively filtering out all non-array class code from the C++ application. 

As a rule, if a program tree can be parsed (without error) using a grammar then the program tree has 
a representation in that grammar. More specific to the array class, if a part of an application code parses 
using the array class grammar then it represents application code that uses the array class. This simple 
mechanism is used to literally find the use of array class abstractions (array objects, operators, etc.) within 
the application source. Once found we know only that array class abstractions have been located, nothing 
more specific or specific enough to pinpoint where to introduce a transformation. Parsing the C++ grammar 
into a representation of the application using the array class grammar builds a new program tree. 

The specification of the additional grammar is required to pinpoint array assignment statements (for 
esample) within the array class grammar representation of the program tree. The process of defining the 
array-assignment grammar and parsing the array grammar program tree into an array-assignment grammar 
program tree proceeds i-dentally as in the transition from the original C++ grammar (the Sage II program 
tree). The program tree using the array grammar is parsed and a program tree using the array assignment 
grammar is constructed. 

\I’ith the application program’s representation in the array-assignment grammar it is clear that all array 
assignment statements have been found, since by definition they were recognized by the array assignment 
grammar. The use of still higher level grammars can be used to further refine (filter) the collection of array 



assignment statements. Higher level grammars might include stencil grammars for example which would 
pinpoint specific types of stencil operations for cache based transformations. 

2.2 Specification of a Transformation 

The specification of a transformation addresses what the optimization will be and completes the process of 
defining an optimization once it is known where it will be introduced. The specification of the transformation 
must be represented in multiple parts and these parts must be assembled depending upon the the context of 
the original statement (in the case of an array assignment optimization the context can include the dimension, 
number of operands, etc.; if this information is not represented in the grammar directly). 

The specification of the transformation varies greatly in complexity, it is the program tree that is trans- 
formed and the tree consists of many different elements of grammar, each is transformed separately. The 
transformation of the program tree occurs as a transformation of the program tree associated with a higher 
level grammar into a program tree associated with a lower level grammar. 

For the case of a transformation of an array-assignment statement the transformation consists of a 
transformation of the program tree associated with the array-assignment grammar into a program tree 
associated n-ith the array grammar and then a second transformation of the program tree associated n-ith 
the array grammar. 

For each element of grammar within the program tree a transform function is defined (current attempts 
are being made to automate the generation of these functions from the definition of the grammar (directly 
from the specification of the transformation rules). This transformation is defined to be a map of the elements 
of the higher level grammar into the lotier level grammar. 

There are tn-o n-ays to specify the transformation of a terminal or non-terminal in a higher level grammar 
into a Ion-er level grammar. 

1. Hard coded Here the transformation is explicitly defined by supplementing the definition of that 
element of the grammar. Space precludes an example: but required elemets are assembled explicitly 
from the C++ grammar defined by the Sage II objects. 

2. By example Here the transformation is separated into pieces and how the pieces are fix together is 
defined explicitly. 

Ilore mechanisms may be defined as research is done to more completely automate the specification of a 
transformation from as simple a description as possible. 

In the case of an assignment statement the transformation of the different elements of the grammar are 
called recursively through the program tree to build a separate program tree representation n-ithin a lower 
level grammar. 

A grammar is defined by a collection of product rules, but the transformation of one grammar into 
another is outside of what a common grammar can represent. So the transformation of a grammar into a 
lower level grammar is defined by a separate set of transformation rules. These rules are dependent only 
upon a given pair or grammars. Current research in ROSE is defining mechanism to automate the generation 
of code which implements these rules. 

Figure x shows the specification of the elements of the transformation, Figure y sh0K-s how these are 
assembles at compile time. 

Figure x shows how these elements of the transformation are assembled into code based on the details 
of the statement being transformed. This code defined the transform membe function on for the arrayAs- 
signmentstatement element of the grammar. Many detials are left to the reader since this paper is of 
limited length. 

As a final example, we present two tiny codes, one using the array class directly, and the other being the 
output of ROSE. 

2.3 Summary 

The final result in ROSE is a mechanism that reads C++ application source code, recognizes arbitrary 
abstractions and implements customized transformations that provide better performance. The mechanism 



// Example of transformation specification (in this case for an array statement) 

FIJNCTION~DEFINITION UNIQUE~PART~OF~TRANSFORMATION 0 
I 

/I This code is only required once for all the operands in the same scope 
int GLOBAL-INDEX-NAME = 0; 

) 

FONCTION~DEFINITILlN LHS~PART~OF~TRANSFORMATION 0 
t 

// This is code that is required once for the Lbs operand 
double* RESTRICT LHS~ARRAY~DATA~POINTER = LHS_ARRAY.getDataPointerO; 

1 

FIJNCTION~DEFINITION RHS~PART~OF~TRANSFORATION (int number0fRhsOperands) 
t 

LOOP(numberOfRhsOpermds) 
t 

// This is code that is required once for the Lbs operand 
double+ RESTRICT RBS-ARRAY-DATA-POINTER = RBS-ARRAY.getDataF'ointerO; 

1 
) 

FUNCTION~DEFINITION LOOP~PART~OF~TRANSFORHATION 0 
I 

// This code is required only once for this transformation 
cons& int base-lD_0 = LHS-ARRAY.getBase (0); 
cons3 int bound-lD_0 = LBS-ARRAY.getBound (0); 
coast inr stride-lD_0 = LHS-ARRAY.getStride(O); 
for (GLOBAL-INDEX-NAME = base-lD_0; GLOBAL-INDEX-NAKE <= bound-lD_0; GLOBAL-INDEX-NAME++) 

t 
// This code would be modified with the edited us.er inner loop statement 
// The first statement will be replaced within the transformation process 

// LHS~ARRAY~DATA~POINTER~ROSE_SUBSCRIPT~CO~~ATION~lD~GLOBAL~I~~~NA~,O,stride~lD~0~~ = 
// RESJRRAY~DATA~POINTERCO1; 

// It is in the transformation of the statement (called by ROSE recursively on 
// the program tree associated with the highest level granrar) that specific 
// transformations are introduced). Look at the specificarion of the transformtions 
// of the gramar elements (at all levels of the gramar higherarchy). 

TRANSFORED~STATEMENTO ; 
1 

) 

Figure 4: i\rray Assi~ment Grammar Production Rules: &ample of product rules (in EBSF notation) for the 
anay assignment grammar using the mechanisms for defining gamma.rs within ROSE. 

is powerful since it is fully programmable, can be coupled with dependence analysis and any other tradi- 
tional program analysis mechanism to capitalize upon the surrounding context of the use of a framework’s 
abstraction. In this way, it significantly more powerful than C++ template based mechanisms (expression 
templates) which preform little more than text editing with no program analysis being possible, such methods 
delegate all program analysis to runtime checks. 

Within ROSE the optimization of abstractions within an object-oriented framework can be defined 
through the specification of a grammar and a transformation. Some optimizations may be best introduced 
using multiple grammars defined within a hierarchy. The example presented in this paper shows how an 
array grammar is specified and how a grammar specific to the optimization of array assignment statements 
(the array assignment grammar) is defined using that array grammar. Our present esperience has been 
with such shallow grammar hierarchies, but it is clear that the mechanisms being developed are general 
and can support the deeper hierarchies required for the specification of much more complex stencil specific 
optimizations. 

The specification of an optimization requires the definition of one or more grammars and the specifi- 
cation of the transformation itself. The advantage of using a hierarchy of grammars is that higher level 
grammars are greatly reduced in size (number of terminals and nonterminals) and corresponding complex- 
ity. In addition multiple grammars defined above a common lower level grammar within the hierarchy can 
leverage the defined transformations of the lower level grammar, simplifying the development of specialized 
optimizations. This construction of a hierarchy of grammars supports the iterative refinement of increasingly 



// Example of a transform member function 
// Code to put the program tree fragments (after they are recognized 
/I using om transformation specification grammar) 

TransformationSpecificationStatementBlock transformSpecification; 
TransformResult arrayAssignmantStatement::transformO 

( 
I/ Build storage for final transformation 

TransformResult result; 

TransformationSpecificationFunction transformMetaFunctionUnique = transformSpecification.get("UNI4UE_PART_OF_TRNSFORMATION"); 
transformMetaFunction = transformMetaFunctionUnique.edit ~"CLOBAL~INDEX~NAME","i"); 
result.add(transformMetaFunctionUnique.getBlockO); 

TransformationSpecificationFunction transformMetaFunctionL.hs = transformSpecification.get("LHS_PART_OF_TRANSFORHATION"); 
transformMetaFuction = transformMetaFunctionLhs.edit ("LHS_ARRAY",variableNameCOl); 
transformMet.aFunction = transformKetaFunctionLhs.edit ("LHS~ARRAY~DATA~POINTER".transformedVariableName[0l); 
result.add(transformNetaFunctionLhs.getBlockO); 

for (int i=O; i < numberOfRbsOperands; i++) 
{ 

TransformationSpecificationFunction transformMetaFunctionRhs = transformSpecification.get("RBS_PART_OF_TRANSFORnATION"); 
transformMetaFunction = transformHetaFunctionHbs.edit ("RBS_ARRAY",variableNameCi+ll); 
transformMetaFunction = transformMetaFunctionRhs.edit ("~S~ARRAY~DATA~POINTER",transformedVariableNameCi+1l~; 
result.add(transformnetaFunctionRhs.getBlockO); 

> 

TransformationSpecificationFunction transformHetaFunctionLoop = transformSpecification.get("LOOP_PART_OF_~NSFORnATION"); 
transformKet.aFunction = transformHetaFunctionUnique.edit ("GLOBALJiDEX-NAME","i"); 
tsansformMetaFunction = transformMetaFunctionlhs.edit ("LHS_ARRAY",variableNameCOl); 
result.add(transformMetaFunctionLoop.getBlock()); 

return result; 
1 

Figure 5: Array Assignment Grammar Production Rules: Example of product rules (in EBNF notation) for the 
array assignment grummar using the mechanisms for defining grammars within ROSE. 

specialized optimizations over time. An over-arching goal within ROSE has been to define a simple coherent 
mechanism that permits the implementation of optimizations within arbitrary object-oriented frameworks 
and to accomplish these optimizations in a few hours of work. 

3 Conclusion 

The mechanism presented within ROSE defines a general mechanism applicable to any object-oriented frame- 
work. The framework’s development of powerful abstractions is not compromised by the inability of the 
compiler to optimize them. It is likely still that case that using abstractions of appropriate granularity is 
prudent in the design of object-oriented frameworks, but the interaction of abstractions of a framework can 
be optimized without resorting to obscure C++ template tricks and and the mechanisms are fundamentally 
more powerful. ROSE as a mechanism is more powerful because it permits the use of a full range of standard 
program analysis techniques and because the transformations can capitalize upon the surrounding context. 
This later point of understanding the surrounding context as part of the optimization is crucial to the de- 
velopment of fusion over statements and sophisticated cache optimizations addressing spatial and temporal 
locality within scientific computations. 

The mechanisms within ROSE, since they are orthogonal and independent from the ‘framework, can be 
retrofitted into existing frameworks for use with previously developed applications using those frameworks. 

Lastly, ROSE preserves the intended elegance of the frameworks design by providing mechanisms for 
the optimization of the interaction of any size abstraction expressed using the C++ languages overloaded 
operators. Using the semantics of the framework’s abstractions more sophisticated (and higher performance) 
optimizations are possible since knowledge of the framework’s semantics leads directly to significantly more 
information and from that a greater level of optimization can follow. 



#include "A++.h" 

int main0 

int size = 10; 
double gamma = 2.0; 
doubleArray ACsize); 
doubleArray B(size); 
Range I(1, size-l); 
Range J(1, size-2); 

A(I) = ( B(I+l) + BCI-1) 1 * 2.0; 

printf ("Program Terminated Normally! \n"); 
retu-n 0; 

1 

Figure 6: Example A++ code before processing using ROSE. 
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#include <A++.h> 

#4 %sstZ.C" 
int main0 

< 
auto int size=lO; 
auto double gamma=Z; 
auto doubleArray ACsizef; 

%9 Yest2.C" 
auto doubleArray BCsize); 

it10 "test2.C" 
auto Range I(1,si.w - 2); 

it11 "test2.C" 
auto Range J(l.size - 2); 

tt13 "test2.C" 
I 

// Transformation for: A(I) = BCI-1) + B(I+l); 
int rose-index=O; 
double 1, restrict A-rose-pointer = (A . getDataPointer)(); 
double * restrict B-rose-pointer = (B . getDataPointer)O; 
const int base-lD-0 = (I . getBase)(); 
const int bound-lD_0 = (I . getBound)(); 
const int rose-stride = (A . getStride)( 
const int rose-base = (B . get8ase)(O); 
for(rose-index = base-lD_0; rose-index <= bound-lD_0; rose-index++) 

I 
A_rose_pointerCrose_indexl = 

(B_rose_pointarC(rose_index + l)] + B_rose_pointer[(rose_index - i)]) * 2; 
) 

1 

1249 "/usr/include/stdio.h" 
printf(((const char * )"Program Terminated Normally! \n")); 

#49 "test2.C" 
return 0; 

1 

Figure 7: Example of output from processing of A++ code using ROSE. 


